
International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 711
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

Buffer Bottleneck in UDT
Tapan Kumar Nayak1, Anup Avistita2, Somnath Kejriwal3

Abstract— UDT is built on top of UDP with reliability control & congestion control, which employs a fixed size application level buffer to hold the data
before delivering it to upper layer protocols. The fixed size application level buffer leads to two different problems. Firstly, a fixed size buffer without
any precise control flow mechanism discards the newly arrived packets when exhausted, decreasing the throughput sharply .Secondly, buffer wouldn’t be
exhausted but to maintain certain flow mechanism they have to send the data below a certain threshold. Thus UDT being high speed protocol is still
unable to utilize the network bandwidth efficiently. We refer this problem of fixed size application level buffer to be “Buffer Bottleneck in UDT”. The
size of buffer being either too large or small impairs the performance of transport protocol. The factors which are responsible for deciding the buffer size
varies dynamically, thus requiring a need for a mechanism which dynamically adapts the buffer size. In this paper, we propose a mechanism which
dynamically adjusts the buffer size, allowing UDT to utilize the rapidly emerging high speed wide area optical networks effectively.

Index Terms—Buffer Bottleneck, Congestion Control, Exponential Moving Average, Fixed size Buffer, Transport Protocol, UDP, UDT

—————————— ——————————

 1 INTRODUCTION
In the past few years, the network bandwidth has
been increased rapidly. Five years ago, a 1 GB/s
link could be regarded as an extremely fast link,
but today, 10 GB/s links have become very com-
mon on high speed testbeds, and 40 GB/s links are
emerging. The widespread use of high speed net-
works has enabled many new distributed data in-
tensive applications that were impossible in the
past.
 Meanwhile, we are living in a world of exponen-
tially increasing data. Examples of large volumetric
datasets involved in these applications include sat-
ellite weather data, astronomy observation data,
and network monitoring data. In the past these
data were usually stored in local storage and then
were delivered or processed in a batch mode. To-
day they can be transferred to a remote site in real
time and be processed there.
Unfortunately, the high-speed networks have not
been smoothly used by highly developing applica-
tions. The Transmission Control Protocol (TCP)
fails to perform efficiently under these high speed
networks leading to introduction of various vari-
ants in TCP which also underutilizes these network
bandwidths [1]. Thus to achieve high speed data
transfer a UDP based protocol has been proposed
& deployed name UDT [2]. UDT utilizes the net-
work bandwidth efficiently but is unable to im-
prove the throughput which is restricted by the
fixed size application buffer [3] deployed in the
receiving side.

2 PROBLEM STATEMENT
UDT still cannot fully utilize these high bandwidth
networks. In this protocol the receiver employs a
fixed-size application level buffer to hold the data
received before delivering it to upper layer proto-
cols. As the buffer size is fixed, the buffer could be
exhausted in protocols without a precise flow con-
trol mechanism [4]. The newly arrived packets

would be discarded and the throughput will de-
crease dramatically. Protocols with precise flow
control ensure that the buffer would not be ex-
hausted, but they have to employ a conservative
mechanism to send the data at a speed below a
certain threshold level. In both the cases, the
throughput would be limited by the fixed buffer
size, which we refer to be Buffer Bottleneck in
UDT.
A common practice to avoid buffer bottleneck is to
manually set the receiving buffer size to a large
value. However due to difficulty of estimating the
actual buffer size needed, manual adjustments
tends to be either too small to maximize the trans-
fer throughput or too large to fully utilize the large
amount of memory. Also a waste of memory in one
application could significantly impair the perfor-
mance of other applications.
A large buffer requires complicated data struc-
tures, resulting in high overhead in buffer man-
agement. When memory in receiver side is heavily
loaded, a large buffer leads to serious performance
drops. Therefore an optimal buffer size is needed
to found.
It is practically found that the optimal buffer size
varies dynamically during runtime depending on
the factors such as available memory, no. of simul-
taneous transfers’ & many more.
Thus a straight forward approach is to adapt the
receiving buffer size dynamically with change in
parameters the optimal buffer size depends upon.

3 IDEA OF DYNAMIC BUFFER
In this paper we are discussing only about the
buffer deployed in receiver end as, firstly, there is
seldom concern about the sending buffer in UDP
based protocols, secondly, the OS can manage the
kernel UDP buffer on demand by simply monitor-

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 712
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

ing the buffer occupancy, while in the receiving
end buffer occupancy is not an indicator of buffer
demand as precise flow control ensures that the
buffer doesn’t get exhausted.
There are no performance metrics to measure the
buffer performance in receiving end as present in
sending end buffer, such as TCP’s dynamic adapta-
tion scheme was proposed for sending buffer of
I/O requests based on estimated data latency. These
schemes aim at adapting the sending buffer, & use
the perceived performance metrics such as packet
loss, queuing delay & BDP to adjust sending buffer
size. No such metrics exists for the buffer at the
receiving end.
Various theoretical & experimental analyses have
shown that the receiving buffer size depends upon:
-

1. CPU Usage (Busy/Idle)
2. Available Memory
3. Available Bandwidth
4. No. of Simultaneous Transfers

When the CPU or disk becomes busy, increase the
buffer; when the memory becomes heavily loaded,
decrease the buffer; when the available bandwidth
de-creases, decrease the buffer; and when the
number of simultaneous transfers (transfer number
hereinafter) de-creases, increase the buffer.
Moreover, it is difficult to deal with situations
where more parameters change simultaneously.
For example, there is a change (decrease) in
memory utilization (which requires increasing the
buffer) meanwhile there is another change (in-
crease) in transfer number (which requires decreas-
ing the buffer). Therefore, it is important to design
an algorithm that can adapt to changes in all types
of conditions.

All the factors described above except available
memory ultimately lead to the variation of the fol-
lowing two rates: data arrival rate, vrecv, and data
consumption rate, vsrv, in the buffer. When the disk
becomes busy, vsrv decreases; when the available
link bandwidth increase, vrecv increases; other con-
dition changes, except the variation of available
memory, can also be transformed to the variation
of vrecv or vsrv.
Buffer adaptation decision is taken based on fol-
lowing three steps in Rate Detection based scheme.
Step 1: Periodic detecting the values of Vrecv & Vsrv.
Step 2: If Vrecv is constantly larger than Vsrv, the
buffer must be increased; if Vrecv is
constantly smaller than Vsrv, the buffer must be
decreased; otherwise, the buffer does not need to
be adapted.

Step 3: As the factor of available memory cannot be
transformed to the variation of Vrecv and Vsrv, the
adaptation extent in each buffer increase/decrease
operation is also adapted according to the available
memory.

4 AN APPROACH TO DYNAMIC BUFFER

Dynamic Buffer Adaptation employs a rate de-
tection based approach [5]. If the rate of data re-
ceival is greater or lesser than the rate of data con-
sumption then the buffer size needs to be increased
or decreased respectively. The implementation of
this type of approach faces the following three sub-
problems:

1. It is difficult to decide when to de-cide
adapt the buffer. However, it is not clear
how to quantify that vrecv is constantly
larger/smaller than vsrv.

2. There is any existing way about how
much the adaptation extent should be or
what kind of adaptation pattern should
be employed.

3. The adaptation extent must be adaptive
to the available memory in the receiver.

5 BUFFER ADAPTATION DECISION

Dynamic Buffer at receiving side employs a rate
detection based buffer adaptation approach. Three
sub problems lie in such a rate detection based
scheme:

1. When to accept the buffer
2. To what extent buffer should be used
3. The factor available memory cannot be

transformed to the variations of Vrecv & Vsrv.

5.1 When to accept?

• vb = vrecv − vsrv
• Various experiments with a UDP based

high speed protocol, as well as another
UDP based high speed protocol shows
that 3 categories of scenarios for vb from
the aspect of buffer adaptation for these
protocols:

1 Scenario 1 vb constantly al-
ternates between nearly the
same positive and negative

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 713
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

values. The buffer requires no
adaptation.

2 Scenario 2 vb is constantly
positive or negative during
several consecutive epochs.
The buffer size should be in-
creased or decreased respec-
tively

3 Scenario 3 Scenarios other
than the above two. For ex-
ample, vb changes abruptly in
certain discrete epochs or var-
ies significantly between pos-
itive and negative values. It is
not easy to decide how to
resize the buffer.

Scenario 3 is needed to be transformed to either
Scenario1 or Scenario 2. Some Moving Averages
methods are useful in smoothing out short – term
fluctuations & high lighting long term trends.

SMA (Simple Moving Average) treats all activities
without discrimination, while EMA (Exponential
Moving Average) emphasizes recent activities
more than old activities. Thus, EMA performs bet-
ter if a quick response to recent activities is re-

quired.To make the buffer adaptation more re-
sponsive, we also employ the EMA scheme to
make a transformation of vb. Let vb,n represent the
value of vb in the nth epoch. The EMA transfor-
mation of vb is shown in Equation (1). The new
value vb is determined by both the detected rate
difference in the current epoch and its value in the
last epoch, of which the weight given to the current
epoch depends on the parameter ω (ω ∈ [0, 1]).

V’ b,n = ωVb,n + (1 − ω)Vb,n−1 Eqn. 1

Let k denote the number of epochs which the buff-
er adaptation decision is made based on, and let
Vb,i represent Vb in the ith epoch. Let f denote the
buffer adaptation decision; the decisions to in-
crease, decrease and make no adaptation are repre-
sented by f = 1, f = −1 and f =0 respectively. Then
the decision of buffer adaptation can be expressed
as follows: -

],1[,0',1 , nknivifor ib +−∈>∀

=f],1[,0',1 , nknivifor ib +−∈<∀−

 0 Otherwise

{IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 714
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

5.2 To What Extent?

TCP tries to additively increase the congestion window size to
maximize the throughput, until the packet loss is detected; the
congestion window is halved to avoid further packet loss. TCP
employs AIMD (Additive Increase Multiplicative Decrease) [5]
scheme. We observe that our motivation is opposite to that of
TCP, i.e., the buffer size is expected to increase aggressively, so
that the transfer throughput cannot be limited by the buffer
size; it is also expected to decrease conservatively in case of
large span rate (vb) & a sharp increase in buffer demand af-
terwards.

However MIAD [6] scheme is not good in our scenario as it
suffers from a sharp throughput drop in each one of the buffer
increase operations. So we employ LAICD scheme in dynamic
buffer adaptation. It avoids the overhead, but remains the
property of aggressive increase & conservative decrease. The
aggressive increase & conservative decrease are achieved by
giving different adaptation extent to the increase & decrease
operations. The increase operation is given a higher extent
than the decrease operation, although both are linear. The fol-
lowing equation shows the above idea: -

 nbN vL ,1 'b+ If 1=f

=+ 1NL NL If 0=f

 nbN vL ,2 'b− If 1−=f

5.3 Memory Availability

An adaptation scheme without considering the available
memory could impair the performance of the transfer as well
as the whole system. For example 10 MB adaptation extent in
1000 MB available memory doesn’t affect much but the same
adaptation extent in 50 MB available memory will impair the
performance.

Higher memory utilization requires smaller increase extent &
bigger decrease extent whereas a lower memory utilization
requires bigger increase extent & smaller decrease extent (i.e.
if the buffer size needs to be increased but the available main
memory is less than the buffer must be decreased and the
sending rate must be decreased) [7]. The expected curve
doesn’t need to be Linear Monotonic as can be seen in follow-
ing fig.

Fig.3. Graph showing increase decrease extent versus the memory availability
in RAM

Adaptation extent makes a tradeoff between the de-

mands of the transfer & receiving server based on the state of
memory utilization. When the memory is heavily loaded, the
receiving server is given a high priority; otherwise; the trans-
fer is more highly prioritized. It can be achieved by a
Weighted Mean Function (WMF) with the memory utilization
as time varying weights. α(n) denote the memory utilization in
the nth epoch, the buffer size after the increase & decrease
operation can be expressed as: -

 nbN vnL ,1 '))(1(bα−+ If 1=f

=+ 1NL NL If 0=f

 nbN vnL ,2 ')(αb− If 1−=f

6 IDEA TO IMPLEMENTATION

In this section we are providing a way following which the
idea of dynamic buffer can be implemented. The approach
consistsof 3 functions linked to each other. The first one takes
the buffer adaptation decision by periodically detecting the
rate of consumption & rate of arrival of data whereas second
& third functions perform the part of increasing or decreasing
the buffer size as required. The above functions can be imple-
mented through the flow chart below:

{

Memory Availability

In
cr

ea
se

 &
 D

ec
re

as
e

Ex
te

nt

INCREASE EXTENT DECREASE EXTENT

{IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 715
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 716
ISSN 2229-5518

IJSER © 2013
http://www.ijser.org

7 CONCLUSION

A number of high-bandwidth networks have been construct-
ed, existing high-speed protocols cannot fully utilize the
bandwidth of these networks, as their fixed size application
level receiving buffers suffer from buffer bottleneck. A rate
detection based buffer adaptation scheme is remedy to this
problem.

• Exploring this dynamic buffer adaptation extent
in other transfer protocols.

• Exploring this scheme in high speed Local &
Wide Area Networks

• Implementing this scheme as libraries so that it
can be easily ported in to the existing networks.

REFERENCES

[1] W. Feng and P. Tinnakornsrisuphap: The Failure of TCP in

High-Performance Computational Grids, Proc. of
SuperComputing 2002.

[2] Yunhong, G., Robert G.: UDT: UDP-based Data Transfer for High-
Speed WideArea Networks. University of Illinois, Chicago (2006)

[3] “ Receiving Buffer Adaptation For High Speed Data Transfer” Hao
Liu, Yaoxue Zhang, Yuezhi Zhou, Xiamong Fu, Laurenece T Yang (
Vol 6, January 2012)

[4] Yunhong, G.: UDT - A High Performance Data Transport Protocol.
University of Illinois, Chicago (2005)

[5] “An Analysis of AIMD Algorithm with Decreasing Increases” Yun-
hong Gu, Xinwei Hong, and Robert L. Grossman (Unpublished Pub-
lication)

[6] D. Chiu and R. Jain, "Analysis of the Increase/Decrease Algorithms
for Congestion Avoidance in Computer Networks," Journal of Com-
puter Networks and ISDN, Vol. 17, No. 1, June 1989, pp. 1-14.

[7] Data Communication & Comminication Network, 3rd Edition B.
Forouzan.

————————————————
1. Tapan Kumar Nayak is currentlylecturer in Computer Science & Engineer-

ing department in College of Engineering & technology, Odisha, India. E-
mail: chiku.tapan@gmail.com

2. Anup Avistita is currently pursuing bachelor degree program- in Computer
Science & Engineering in Biju Pattnaik University of Technolgy, Odisha
(India). E-mail: cet.anup@gmail.com

3. Somnath Kejriwal is currently pursuing bachelor degree program-in Com-
puter Science & Engineering in Biju PattnaikUniversity of Technolgy, Od-
isha (India). E-mail: somnath.kejriwal@rediffmail.com

IJSER

http://www.ijser.org/
mailto:chiku.tapan@gmail.com
mailto:cet.anup@gmail.com

	1 Introduction
	2 Problem Statement
	3 Idea of Dynamic Buffer
	4 An Approach to Dynamic Buffer
	5 Buffer Adaptation Decision
	5.1 When to accept?
	5.2 To What Extent?
	5.3 Memory Availability

	6 Idea to Implementation
	7 Conclusion
	References

